Survival analysis with error-prone time-varying covariates: a risk set calibration approach.

نویسندگان

  • Xiaomei Liao
  • David M Zucker
  • Yi Li
  • Donna Spiegelman
چکیده

Occupational, environmental, and nutritional epidemiologists are often interested in estimating the prospective effect of time-varying exposure variables such as cumulative exposure or cumulative updated average exposure, in relation to chronic disease endpoints such as cancer incidence and mortality. From exposure validation studies, it is apparent that many of the variables of interest are measured with moderate to substantial error. Although the ordinary regression calibration (ORC) approach is approximately valid and efficient for measurement error correction of relative risk estimates from the Cox model with time-independent point exposures when the disease is rare, it is not adaptable for use with time-varying exposures. By recalibrating the measurement error model within each risk set, a risk set regression calibration (RRC) method is proposed for this setting. An algorithm for a bias-corrected point estimate of the relative risk using an RRC approach is presented, followed by the derivation of an estimate of its variance, resulting in a sandwich estimator. Emphasis is on methods applicable to the main study/external validation study design, which arises in important applications. Simulation studies under several assumptions about the error model were carried out, which demonstrated the validity and efficiency of the method in finite samples. The method was applied to a study of diet and cancer from Harvard's Health Professionals Follow-up Study (HPFS).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression calibration in semiparametric accelerated failure time models.

In large cohort studies, it often happens that some covariates are expensive to measure and hence only measured on a validation set. On the other hand, relatively cheap but error-prone measurements of the covariates are available for all subjects. Regression calibration (RC) estimation method (Prentice, 1982, Biometrika 69, 331-342) is a popular method for analyzing such data and has been appli...

متن کامل

Correction for covariate measurement error in nonparametric regression

Many areas of applied statistics have become aware of the problem of measurement error-prone variables and their appropriate analysis. Simply ignoring the error in the analysis usually leads to biased estimates, like e.g. in the regression with error-prone covariates. While this problem has been discussed at length for parametric regression, only few methods exist to handle nonparametric regres...

متن کامل

An estimator for the proportional hazards model with multiple longitudinal covariates measured with error.

In many longitudinal studies, it is of interest to characterize the relationship between a time-to-event (e.g. survival) and several time-dependent and time-independent covariates. Time-dependent covariates are generally observed intermittently and with error. For a single time-dependent covariate, a popular approach is to assume a joint longitudinal data-survival model, where the time-dependen...

متن کامل

کاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی

Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...

متن کامل

Varying Coefficient Models for Sparse Noise-contaminated Longitudinal Data.

In this paper we propose a varying coefficient model for highly sparse longitudinal data that allows for error-prone time-dependent variables and time-invariant covariates. We develop a new estimation procedure, based on covariance representation techniques, that enables effective borrowing of information across all subjects in sparse and irregular longitudinal data observed with measurement er...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 67 1  شماره 

صفحات  -

تاریخ انتشار 2011